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Overview 

The goal is to develop a numerical tool that can be used to predict the direct, steady-state dynamics response 
of an infinite 1D bar structure subject to an oblique incident wave using Bloch-Floquet periodicity.  Bloch-
Floquet theory is used to extend the results of a unit cell into the infinite domain by imposing periodic 
boundary conditions (PBCs) on the edges of the bar.  Bloch-Floquet theory is required when a structure is 
loaded obliquely as shown in Figure 1 below which generates traveling waves across the structure and care 
must be taken to ensure the phase of the wave is incorporated in the constraint.  Typical applications of Bloch-
Floquet theory are the design of band-gap structures [2] and surface acoustic wave (SAW) structures [3]. 

 
Figure 1. Infinitely periodic bar model of two different material properties subject to an impinging wavevector, k 

The resulting loading causes a traveling wave to develop in the structure.  The wavenumber of the loading is a 
property of the acoustic medium, 

𝑘 =
𝜔
𝑐

 

where ω is the circular frequency of excitation and c is the wave speed of the acoustic medium.  The trace 
wavelength along the length of the bar is   

𝑘𝑥 = 𝑘 sin𝜙 

In lieu of the acoustic medium in the analysis, this can be directly applied as a force at the nodes of the finite 
elements in the model.  The applied force becomes 

𝐹 = 𝐹0𝑒𝑖𝑘𝑥𝑥 = 𝐹0{cos𝑘𝑥𝑥 + 𝑖 sin𝑘𝑥𝑥} 

where x is the coordinate of the bar.  This in-plane loading can be conceptualized as in Figure 2. 



 
Figure 2. Infinitely periodic bar model of two different material properties subject to an impinging trace wave 

The key is than an infinite domain can be represented by a single unit cell, as shown by a rectangle in Figures 1 
and 2.  The unit cell is the only domain modeled by finite elements.  The results of the other cells can be 
predicted using Bloch-Floquet theory.  Here, the theory is used to impose the following constraint, 

𝒖(𝐿) = 𝒖(0)𝑒−𝑖𝑘𝑥𝐿 

which is used to ensure a proper phase relation between over the length of the unit cell.  The magnitude will 
always be equal, however.  In order to impose this constraint, however, the trace wavenumber in the 
structure must be known a priori. 

 

Derivation of the weak form of the linear momentum balance for a steady-state dynamics direct procedure 

The direct approach seeks to solve the linear momentum balance with an acceleration term directly.  The 
steady-state assumption is made during the Galerkin formulation. 

The strong form of the linear momentum balance is defined as [1] 

𝛻𝑦 ∙ 𝝈 + 𝜌𝒃 = 𝜌𝒂, 

or alternatively in index notation, 
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑏𝑖 = 𝜌𝑎𝑖. 

By the principle of virtual work (PVW), an arbitrary test function, 𝛿𝑢𝑖  , is constructed over the volume 

� �
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑏𝑖 − 𝜌𝑎𝑖�
𝑉

𝛿𝑢𝑖  𝑑𝑉 = 0 

Neglecting body forces and separating terms gives 

� 𝛿𝑢𝑖
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

𝑑𝑉 − �𝛿𝑢𝑖
𝑉

𝜌𝑢̈𝑖
𝑉

𝑑𝑉 = 0 

Integrating by parts on the first terms and applying the divergence theorem gives 

�𝑛𝑗𝜎𝑗𝑖𝛿𝑢𝑖
𝑆

𝑑𝑆 − � 𝜎𝑖𝑗
𝜕𝛿𝑢𝑖
𝜕𝑥𝑗𝑉

𝑑𝑉 − �𝛿𝑢𝑖
𝑉

𝜌𝑢̈𝑖𝑑𝑉 = 0 

Applying the traction BC gives 

L 



�𝑡𝑖∗𝛿𝑢𝑖
𝑆

𝑑𝑆 − � 𝜎𝑖𝑗
𝜕𝛿𝑢𝑖
𝜕𝑥𝑗𝑉

𝑑𝑉 − �𝛿𝑢𝑖
𝑉

𝜌𝑢̈𝑖𝑑𝑉 = 0 

Reordering gives us the weak form 

�𝛿𝑢𝑖
𝑉

𝜌𝑢̈𝑖𝑑𝑉 + � 𝜎𝑖𝑗
𝜕𝛿𝑢𝑖
𝜕𝑥𝑗𝑉

𝑑𝑉 − �𝑡𝑖∗𝛿𝑢𝑖
𝑆

𝑑𝑆 = 0 

Discretizing with a Galerkin scheme of 

𝑢𝑘 =  𝑁𝑎𝑢𝑘𝑎 

𝛿𝑢𝑘 =  𝑁𝑎𝛿𝑢𝑘𝑎 

𝜕𝛿𝑢𝑖
𝜕𝑥𝑗

=
𝜕𝑁𝑎

𝜕𝑥𝑗
 𝛿𝑢𝑖𝑎 

And simplifying gives 

𝛿𝑢𝑖𝑏 �𝑢̈𝑖𝑎 �𝜌𝑁𝑏

𝑉
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𝑆
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which must be true for any arbitrary 𝛿𝑢𝑖𝑏.  This can be written in matrix form 

𝑴𝑏𝑎𝒖̈𝑎 + {𝑖𝑪𝑠𝑏𝑎 + 𝑲𝑏𝑎}𝒖𝑎 = 𝑭𝑏     (1) 

Where a structural damping term has been introduced.  The matrices are defined as 

𝑴𝑏𝑎 = �𝜌𝑁𝑏

𝑉
𝑁𝑎𝑑𝑉 

𝑲𝑏𝑎 = � 𝐶𝑖𝑗𝑘𝑙
𝜕𝑁𝑏
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𝑆

𝑑𝑆 

Assuming simple harmonic motion in the case of steady state dynamics, we introduce harmonic displacements 
and forces 

∆𝒖𝑎 =  {Re[𝒖𝑎] + 𝑖 Im[𝒖𝑎]}𝑒𝑖𝜔𝑡 

∆𝑭𝑏 =  {Re[𝑭𝑏] + 𝑖 Im[𝑭𝑏]}𝑒𝑖𝜔𝑡 

where ω is the circular frequency of excitation.  Also note that the acceleration becomes 

∆𝒖̈𝑎 =  −𝜔2{Re[𝒖𝑎] + 𝑖 Im[𝒖𝑎]}𝑒𝑖𝜔𝑡 

This can be substituted into Eq. (1) to give 

𝑴𝑏𝑎�−𝜔2{Re[𝒖𝑎] + 𝑖 Im[𝒖𝑎]}𝑒𝑖𝜔𝑡� + {𝑖𝑪𝑠𝑏𝑎 + 𝑲𝑏𝑎}�{Re[𝒖𝑎] + 𝑖 Im[𝒖𝑎]}𝑒𝑖𝜔𝑡�
= �{Re[𝑭𝑏] + 𝑖 Im[𝑭𝑏]}𝑒𝑖𝜔𝑡� 



The 𝑒−𝑖𝜔𝑡 term drops out, and this expression can be split into real and complex expressions for numerical 
efficiency.  However for the simple implementation at hand, we will solve the complex system of equations in 
MATLAB directly.  The complex system is 

𝑴𝑏𝑎�−𝜔2𝒖𝑎𝑒𝑖𝜔𝑡� + {𝑖𝑪𝑠𝑏𝑎 + 𝑲𝑏𝑎}�𝒖𝑎𝑒𝑖𝜔𝑡� = �𝑭𝑏𝑒𝑖𝜔𝑡� 

Simplifying gives 

{𝑲𝑏𝑎 + 𝑖𝑪𝑠𝑏𝑎 − 𝜔2𝑴𝑏𝑎} 𝒖𝑎 = 𝑭𝑏     (2) 

Now Eq. (2) is solved in MATLAB for displacements where the RHS is known for each node, and the LHS is 
computed for each frequency of interest in the analysis. 

 

Imposing of Bloch-Floquet Periodicity 

The Bloch-Floquet constraint is imposed with a master-slave formulation in MATLAB.  With this approach, the 
node at the beginning of the unit cell (i.e. x=0) is used as the master, and the node at x=L is the slave in the 
constraint.   

𝒖(𝐿) = 𝒖(0)𝑒−𝑖𝑘𝑥𝐿 

A transformation matrix is constructed [4] to relate the original unknowns u1 … uL to the new set in which uL is 
omitted. 

⎣
⎢
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⎢
⎡
𝑢1
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⎥
⎥
⎥
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⎣
⎢
⎢
⎢
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⋮ ⋮ ⋱ ⋮ ⋮
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𝑒−𝑖𝑘𝑥𝐿 0 ⋯ 0 0⎦
⎥
⎥
⎥
⎤
�

𝑢1
𝑢2
⋮

𝑢𝐿−1
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In compact form, 

𝐮 = 𝐓 𝐮�       (3) 

Replacing Eq. (3) into Eq. (2) and pre-multiplying by TT gives the modified system 

𝑨� 𝒖� = 𝑭�       (4) 

Where 

𝑨� = 𝑻𝑇 {𝑲𝑏𝑎 + 𝑖𝑪𝑠𝑏𝑎 − 𝜔2𝑴𝑏𝑎} 𝑻 

𝑭� = 𝑻𝑇 𝑭𝑏 

This modified system in Eq. (4) is solved and the displacements are recovered by Eq. (3).  This method is 
computationally intensive for large problems, however, because of large bandwidth of the system matrix. 

 

Implementation into MATLAB 

A template was downloaded from solidmechanics.org for a bar model and expanded to: 

• Solve the steady state dynamic procedure directly as shown in Eq. (2) 
• Impose Bloch-Floquet boundary conditions per Eq. (4) 
• Include multiple bar properties in the unit cell 



• Ability to model any number of unit cells for validation purposes 
• Ability to impose oblique acoustic loading 

 

Validation of Implementation 

Validation is performed with an analytical model which uses a modal approach to solve the problem.  The 
solution was derived by a fellow colleague and the FEA model is used as a sanity-check.  The modal approach 
uses 2001 terms and the FEA mesh uses 720 two node linear finite elements per unit cell.  The following 
results are shown at 1 kHz with 8 sections and the error in the magnitude of the response is less than 0.1 dB.  
Using more terms in the modal solution and increasing the resolution of the mesh will reduce this error 
further. 

 
Figure 3. Comparison of analytic to FEA solution at 1 kHz.  Top: analytic, Bottom: FEA. 

 

Alternatively, the results at 5 kHz are shown below and no noticeable error is present. 
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Figure 4. Comparison of analytic to FEA solution at 5 kHz.  Top: analytic, Bottom: FEA. 

 

Further, results at 500 Hz, which are off by about 0.05 dB. 

 
Figure 5. Comparison of analytic to FEA solution at 500 Hz.  Top: analytic, Bottom: FEA. 
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Wavenumber-Frequency Diagrams 

With the FEA code validated, it is worthwhile to sweep through a range of frequencies and generate a 
wavenumber-frequency diagram which will show the traveling trace wave and also the periodically shifted 
wave. 

 
Figure 6. Wavenumber-Frequency diagram for the two-section bar model. 

 

Figure (6) shows the vertically shifted wave which is defined by the unit cell length, 𝑘𝑠ℎ𝑖𝑓𝑡 = 2𝜋
𝐿

.  Also note that 

the inverse slope of the visible lines is equal to the wave speed of the trace wave, in this case it is 301 m/s. 

 

Conclusion 

A direct solution to a steady-state dynamics implementation of a bar element was developed subject to Bloch-
Floquet periodicity.  Results were compared with an analytical model and less than a 0.1 dB difference in 
complex magnitude was found in all cases.  This tool can be used to help design simple periodic structures and 
quickly perform parametric studies, such as to generate wavenumber-frequency diagrams as shown in the 
previous section. 
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